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Abstract - A closed periodic condensation-evaporation cycle of a two-phase vapour-liquid ‘bubble’ 
driven by gravity in an immiscible continuous phase with a vertical temperature profile is presented. The 
vertical column can also consist of two stratified layers of two different fluids of similar densities maintained 
at different temperatures. The cyclic motion of the bubble is due to latent heat transport and the ensuing 
differences in the relative densities. The immis~ble liquid drop evaporates in a hot zone at the bottom, 
accelerates by buoyancy upward, reaches a subcooled region and reliquifies. its motion is then reversed, with 
the heavier drop falling back toward the hot region. The characteristics of a Freon bubble-drop moving in 

water at various operating conditions are presented for transient and steady operations. 

NOMENC~TURE T OLIY 

bubble surface area ; 
drag coefficient ; AT 
Froude number, = u2/2Rg; u, 

bubble Froude number, = u2,/2R,g; U at 

gravitational acceleration; 
density ratio, Giiu = Rt/pv; Ga,, = pa/p,); us 
heat transfer coefficient ; UC79 
Jakob number, = p,l/C,,p,(T, - T,); UC, 

thermal conductivity of fluid ; 
thermal conductivity of liquid drop; v, 

thermal conductivity ratio, = kJk,; -5 

thermal condu~ivity ratio, = k,/k~; X 

velocity factor, equation (5); 
pressure of the system; XII? 
Peclet number, = 2Ru/u,; 
bubble Peclet number, = 2R,u&,; X*, 

heat flow rate; 

Nu&l~ number for liquid drop, = 2R,h/k,; 

instantaneous radius of the bubble; 
radius of the fully evaporated bubble; 
instantaneous Reynolds number, = 2Ru~v~; 
= 2R,u,/v,; 

time ; 
temperature; 

temperature of single phase bubble, or drop; 
temperature at the top of cold zone; 
temperature at the bottom of hot zone; 
saturation temperature corresponding to 
p*; 
temperature of bubble wall, = T* for 2 phase 
bubble; 

Nusselt number, = 2Rh/k, ; 
Nusselt number for vapour bubble, = 
2Rohlkr; 

thermal diffusivity surrounding fluid; 
thermal diffusivity ratio, cl&,; 
dimensionless radius, R/R,; 

average density of bubble-drop; 
density of continuous fluid; 
density of liquid drop; 
density of vapor; 
kinematic viscosity of liquid drop; 
heat of evaporation; 
dimensionless temperature, 

= V-- 7’,MT, - T,); 
dimensionless saturation temperature, 
= (T* - T,)(T, - T,); 

dimensionless temperature of bubble, 

= Vb - r,Y(r, - T); 
dimensionless temperature of ftuid, 

= V, - T,Wz - %I; 

Greek symbols 

e*, 

e br 

tem~rature of undistur~d fluid field, = 
T(x) = Tr ; 
temperature driving force, T, - T* ; 
translatory velocity of bubble; 
reference velocity - terminal velocity of the 
vapour bubble; 
dimensionle~ velocity of bubble, = U/U, ; 
amplitude of bubble velocity ; 
normalized dimensionless velocity, 
= u/v,; 
volume of bubble; 
cartesian coordinate; 
dimensionless Cartesian coordinate, 
= x/Ro; 

dimensionless amplitude of bubble path, 

= xdRo ; 
normalized dimensionless coordinate (X/X,) 
with respect to bubble path amplitude. 
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7, dimensionless time, = (Peo/Fro)(art/R~); 

749 dimensionless cycle period ; 
7*, normalized dimensionless time (T/T,). 

Subscripts 

1, liquid phase of bubble ; 

JT 

vapour phase of bubble ; 
continuous fluid, final; 
wall ; 
single phase bubble or drop. 

1. INTRODUCTION 

THE GROWTH and collapse of bubbles while in motion 
through a liquid mass are encountered in numerous 
engineering applications associated with heat and 
mass transfer. A direct contact three-phase heat ex- 
changer, whereby a volatile dispersed fluid is evaporat- 
ing or condensing in an immiscible continuous liquid 
phase is an important example of such systems. The 
practical applications range from water desalination 
units [ 11, geothermal heat recovery systems [2] and in- 
site cooling of computer components [3]. The main 
advantages are due to compactness, absence of solid 
resistance hence avoidance of scale build-up, and 
capacity to operate at relatively low temperature 
driving forces. A comprehensive review of the pertain- 
ing literature and some engineering applications are 
given in [4]. 

Bubble behavior in stagnant, subcooled liquid me- 
dia was studied experimentally [S-S] and theoretically 
[8-l 11. The latter was usually restricted to boundary 
motion with spherical radial symmetry. However, 
stagnant bubble systems are not usually encountered 
in practice. Translatory motions executed by the 
bubble relative to the surrounding liquid greatly affect 
the heat transfer controlled bubble growth or collapse. 

The effect of relative motion on the collapse rate was 
studied theoretically by Tokuda et al. [12], experimen- 
tally and theoretically by Wittke and Chao [ 131 for a 

UPPER POINT 

COLD 
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single component (steam in water) system. A more 
general situation, encompassing single and two- 
component (pentane in water) systems, was investi- 
gated by Sideman et al. [14-161, and extended, by 
Moalem et al. to single-train [17-181 and multi-train 
[18] bubble systems. The effect of translational bubble 
motion on bubble growth was studied by Ruckenstein 
and Davis [20, 211, assuming quasi-steady state and 
potential or modified potential-flow field. The effect of 
the radius-dependent rise velocity associated with 
relatively small bubbles was analysed by Moalem and 
Sideman [22]. 

Practically all previous studies relate to bubble 
growth or collapse as two independent processes. The 
present study represents an attempt to contain bubble 
growth and collapse in one system by analysing a 
closed-loop periodic condensation-evaporation cycle, 
accounting for the instantaneous velocity of rise (or 
fall) due to the continuous variations in bubble size 
and density. 

A schematic presentation of the physical model is 
shown in Fig. 1. The column is either made up of two 
liquid layers of similar densities but with different 
temperatures or of a single liquid which is subjected to 
an upwardly decreasing temperature field. A one 
dimensional temperature profile in the vertical direc- 
tion is assumed, with the maximum temperature at the 
bottom of the column held way below the bulk 
saturation point. Thus, the temperature of any cross 
section of the column is uniform. The continuous 
phase is quiescent and free of bubbling. 

Consider a small drop of a volatile immiscible liquid, 
injected at an arbitrary point in the fluid column. The 
relatively heavy drop (say, a Freon drop in water) will 
move toward the hot zone. Assuming that the fluids 
are not pure enough to sustain superheating, the liquid 
drop will start to evaporate, rapidly increasing in size 
(due to its high liquid to vapour density ratio) and the 
density of the (constant-mass) liquid-vapour bubble 
will simultaneously decrease. Consequently, this two- 
phase ‘bubble’ decelerates to zero, changes its direction 
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FIG. 1. Schematic description of physical model. 
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of motion upward and accelerates towards the cold 
zone at the top of the column. 

Evaporation, and hence bubble acceleration, con- 
tinue as long as the surrounding temperature exceeds 
the saturation temperature of the liquid drops. As the 
bubble crosses the ‘saturation line’, i.e. the boundary 
between the cold and hot zones, where the fluid 
temperature is identical with the saturation point of 
the dispersed phase, the thermal driving force is 
reversed. The bubble begins to condense while still in 
the upward motion. As the density of the two-phase 
bubble increases, the net force driving the bubble 
upwards gradually diminishes. The bubble decelerates 
to zero velocity and begins its downward motion. The 
(partially) condensed bubble now accelerates down- 
wards toward the saturation line where condensation 
is halted and a new cycle of evaporation starts. 

Once steady state conditions are established, and 
the tem~rature gradient in the column is maintained, 
the ‘bubble’ will move up and down the column in a 
constant periodic cycle. As in the classical heat-pipe, 
latent heat is transferred from the hot region at the 
bottom to the cold one at the top. 

2. THE GOVERNING EQUATIONS 

2.1. Velocity of the liquid-vapour bubble 
Whereas the large bubbles exhibit a constant rise 

velocity [23], the process under consideration involves 
a radius-dependent rise velocity associated with the 
evaporation of a small liquid drop to a large vapour 
bubble. Note that the reversal of the direction of 
motion, at the bottom and top of the drop-bubble 
path, requires that a radius-dependent translation 
velocity be used in the analysis. 

An instantaneous force balance on a gravity-driven 
liquid-vapour bubble reads : 

4n P&l -j-R3stp, - ~8) - ~R’CD~ 

(1) 

where R, u and pb are the instantaneous radius, 
velocity and (total) density of the liquid-vapour 
bubble, respectively. CD is the drag coefficient and pf is 
the density of surrounding fluid. Equation (1) includes 
the effect of the added mass due to the bubble 
acceleration and holds for both upward and down- 
ward motion. 

The bubble path is evaluated simply by: 

dx = udt (2) 

where x denotes a translational distance, measured 
upward from the saturation line. Thus, it is positive in 
the cold zone and negative in the hot one. 

2.2. The heat transfer rates 
There is no one general relationship for determining 

the rate of heat transfer to, or from, a liquid drop, a 

vapour bubble or a liquid-vapour bubble with change 
of phase. Therefore, an appropriate rate expression, 
either analytical or empirical, must be applied to each 
of these physical situations. 

2.2.1. The evaporation-condensation regions. The 
assumption of potential flow field around single 
component (steam in water, etc.) coIlapsing, or evap 
orating, bubbles has been proved to be fairly accurate 
[24-261. Under these conditions, the Boussinesq’s 
relation for steady-state transfer to a constant radius 
sphere is given by 

However, it can easily be shown that for a heat 
transfer controlled case, at relatively high Peclet 
numbers (Pe > lOOO), the radial wall velocity is neglig- 
ible compared with the translational velocity. Thus, a 
quasi-steady state may be assumed, i.e. the tempera- 
ture field attains a steady-state instantaneously with 
the change of bubble size and equation (3) may be 
applied locally, utilizing instantaneous variables. In 
terms of the instantaneous heat flux through the 
bubble’s wall, q/A, equation (3) is written as 

q/A = (41 

where T,, T, are the temperatures of the bubble wall 
and surrounding fluid, respectively, and uI is the 
thermal diffusivity of the fluid. 

For bubble evaporation (or collapse), in a two- 
component system equations (3) and (4) must be 
modified to account for the no-slip condition between 
the continuous phase and the immiscible periphery of 
the two-phase bubble. Following earlier studies [16, 
191, a velocity factor, K,, is introduced. This factor is 
designed to modify the convection terms so that the 
resulting solution of the energy equation would cor- 
respond to the actual viscous convection terms. The 
intrinsic merit of this approach is that it allows for a 
general solution of the energy equation for both 
potential and modified-potential flows, and circum- 
vents the need for explicit velocity terms in the viscous 
flow field. The accuracy of the solution of the equation 
of energy in the viscous flow case depends on the 
correct determination of the velocity factor. The 
validity and accuracy of this approach was demon- 
strated by application to the case of heat transfer in 
laminar flow over a flat plate and over a sphere [16]. 
For lack of any better approximation and pending an 
experimental verification, the velocity factor for steady 
state flow over a single sphere, 

K, = 0.25 Pr- Ii3 (5) 

is adopted here. Equations (3) and (4) now become 

Nu = 5 (K,Pe)i’2 (3’) 
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and 

q/A = 
k,(T, - T,) (~RK,u)“~ 1 

Jrt “/ R’ 
(4’) 

Note that K, = 1 for potential flow. T, = T’(x) at any 
cross section, and T, is identical with T*, the satu- 
ration temperature, during the phase change. 

Equating equation (4’) with the flux obtained by an 
energy balance at the wall of the evaporating- 
collapsing bubble, i.e. + Ldp,, yields 

(6) 

2.2.2. Vapour superheating and liquid subcooling 
regions. Depending on the physical system and oper- 
ation conditions, a complete evaporation of the liquid 
drop may be reached and the vapour be further 
superheated while the bubble passed the hot zone. 
Similarly, liquid subcooling of the completely con- 
densed bubble may occur while it is in motion toward 
the hot zone. A simple energy balance for these situ- 
ations gives : 

4n dT 
- 7R3~&,,,,dr = h,.,(T, - ?) (7) 

where h is the heat transfer coefficient and subscripts 1 

or t’ refer to the liquid drop or vapour bubble, 
respectively. The corresponding heat transfer coef- 
ficients for a moving drop or bubble are taken (below) 
from empirical relationships. 

2.3. The normalized system of equations 
We now define 

x2, u=;, fi=; 
0 0 

z=$J$t, Pe,= 
2R,u, 
-, Fro= 

0 0 4 
&- (8) 

Ja, = “’ Nu = 
2Roh T- TI 

C,,p,(T, - T,)’ 
~, e=- 

k / T2 - TI 

where u, is velocity of rise of a bubble of radius R,, the 
radius of the single-phase vapour bubble generated 
from the liquid drop. The resulting dimensionless 
forms of equations (l), (2), (6) and (7), are 

dU 

TiF= 
1 - G,,/ - +GD&~ / u 1 /fi , 

4(G,,/ + f/2) 
G,,, = pb/p/ 

dB 1 NuFr, 

x= 
- 5 P,JaK,,,m* - em), 

0 0 

for two-phase bubbles 

de, ( ! dr= 0 

d% 3 Nu,Fr, 

x= 
-? p,K,j,(e, - em;: 

0 

for a liquid drop [fir = l(G,;,)] (7’a) 

de, 3 Nu,Fro 

dr= - 2 Pe aOll K,,, (4 - 0 I I ; 
0 

for a vapour bubble (jI = 1). (7’b) 

Normally, the evaporation or condensation heights 
are of the order of 15-20cm [17, 181 and thus, the 
variation of the static pressure experienced by the 
bubble has been neglected here as compared to the 
atmospheric pressure. 

Equations (l’, 2’) with either one ofequations (6’, 7’a, 
7’b) are simultaneously integrated by the 
RungeKutta method. The integrations require speci- 
fications of initial values for U, X, 6,, &, and b. Here, a 
bubble of initial radius R,, or p = 1 is placed at the 
‘saturation line’ (X = 0) where 6, = Q* and is initially 
at zero velocity. Obviously, the initial value for &, is 8*. 

The following relationships for the drag coefficient 
and the appropriate Nusselt number [4,26] were used 
here : 

+ 0.4; 0 < Re < 2 x 105(9) 

Nu, = 2 + 4 Pe + $ Pe2 ln(Pe) 
Liquid only, Pe < 10, Re < 1 

Nu, = 1.25 JPe Pe < 100, liquid phase 

Nu, =gPe Pe > 100, gas phase (10) 
n 

Nu = l.l3(K,Pe) 1’2 Pe > 100, two-phase 

NU = 1.25(K,Pe)“2 Pe < 100, two-phase. 

3. RESULTS AND DISCUSSION 

Given the physical properties of the system and the 
standard design parameters [R,, R,, T,(x)], we wish 
to evaluate the bubble path, i.e. the height it reaches in 
the cold and hot regions, and the instantaneous bubble 
radius in steady operations. The instantaneous change 
in the bubble radius, corresponding to the local rate of 
evaporation or condensation yields, by integration 
over the appropriate region, the heat transferred per 
cycle between the cold and hot regions. However, since 
the numerical solution is obtained progressively with 
the bubble translatory motion and time, it is interest- 
ing to note the transient characteristics, as well as the 
steady point values, of the basic variables affecting the 
heat transfer rate between the dispersed and con- 
tinuous phases. 

We consider here, as an example, Freon 113 as the 
dispersed phase and water as the stationary con- 
tinuous phase. Vertical temperature gradients are 
externally established in the water column. 

Two different longitudinal temperature profiles are 
considered. The first profile is represented by a tem- 
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-1 I I I I 

0 1 2 3 4 

NORMALIZED DIMENSIONLESS TIME, 

t*=t/t, 

FIG. 2. Dimensionless transient variation of bubble’s location, 
velocity, temperature and size for a steptemperature change in 

surrounding fluid. 

perature step change across the thermal ‘interface’, i.e. 
the temperatures above and below the interface are 
kept uniform and constant at lower and higher values, 
respectively, than the saturation temperature of Freon 
113. In the second case, the temperatures above and 
below the saturation line vary linearly along the 
bubble’s path. 

3.1. Temperature step change 
Figure 2 exhibits the transient and the following 

ii _,j/, 
05 IO 

NORMALIZED DIMENSIONLESS TIME T”(=T/K,) 

-10 I I 
05 IO 

NORMALIZED DlMENSlONLESS TIME ~*br/rJ 

FIG. 3. Steady-state variation of bubble’s location, velocity, FIG. 4. Effect of Jakob number on steady state bubble’s path 
temperature and size for a step-temperature change in 

surrounding fluid. 
and size for a step-temperature change in surrounding fluid. 

Small bubble. 

steady characteristics of a drop, with an initial dia- 
meter of 0.3cm, travelling between water layers sub- 
jected to a 5°C temperature step change. The drop is 
injected with a dimensionless velocity of U0 = 0.5 at 
the dimensionless location X, = 10 above the ‘thermal 
interface’. For ease of presentation, the X ordinate was 
normalized (to X*) by utilizing X,, the peak to peak 
dimensionless distance (see Figs. 6 and 7 below). As 
indicated by Fig. 2, steady state is approached after 
two cycles. Complete condensation is indicated by a 
horizontal section on the B curve and corresponds to 
positive X* (= X/X,) values. Similar calculation with 
different initial conditions indicate that the stabilizing 
time is normally less than three periods. 

In order to follow the interactions between the basic 
variables, the steady state results of Fig. 2 are com- 
pared in Fig. 3 on a unified time scale. At the point of 
complete evaporation, the radius and the rise velocity 
are at a maximum. A short superheating period starts 
then, which lasts until the bubble crosses the interface, 
where subcooling and then condensation takes place, 
accompanied by a decrease of the rise velocity. At the 
peak of the bubble path, a negative velocity sends the 
drop-bubble down towards the evaporation region. 

The effect of the total temperature driving force is 
demonstrated in Fig. 4. Only the instantaneous bubble 
radius and location are noted. Increasing the tempera- 
ture driving force, manifested by a higher Jakob 
number, has but a slight effect on the normalized 
bubble path. However, the variation in the real bubble 
path is indicated by the effect of the Jakob number on 
the peak to peak amplitude which has been used in 
normalizing the calculated results (see below). 

Fro=30 

a R,,= 1500 

7 Pw = 20,000 
X 
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F,, =I 5 

R, =3000 
PeO = 40,000 

05 IO 

NORMALIZED DIMENSIONLESS TIME T*(= T/T~) 

FIG. 5. Effect of Jakob number on steady state bubble’s path 
and size for a step-temperature change in surrounding fluid. 

Large bubble. 

Similar results are shown in Fig. 5 for a different set 
of Fr,, Reo and PeO numbers. For the present physical 
system of water-Freon 113, this new set is obtained by 
varying the initial radius of liquid drop from 0.3 to 
0.6cm dia. Again, based on peak-to-peak normali- 
zation, the results are very similar to the previous ones. 

P- 

-1.OL 
0 0.5 1.0 

NORMALIZED DIMENSIONLESS TIME 

T‘(= r I Ta) 

FIG. 6. Steady state variations of bubble’s location, velocity, 
temperature and size for a linear temperature change in 

surrounding fluid. 

3.2. Linear temperature prqfiles 
A further extension of the calculated results is 

obtained by imposing a linear temperature profile 
along the continuous phase column, instead of a step 
change. The total temperature driving force, T,-T,, is 
kept at 2.5,s and lo”C, corresponding to Ja = 0.15,0.3 
and 0.6, respectively. Typical results for the bubble 
path and radius are presented in Fig. 6. Inspection of 
Fig. 6 indicates that a temperature step-change across 
the interface yields lower peak-to-peak values than the 
linear temperature profile. This is expected in view of 
the lower local temperature driving force in the latter. 

Figures 7 and 8 indicate the dependence of the 
bubble path on the overall temperature difference, or 
the Jakob number, and the bubble size. As is expected, 
the time and distance required to complete a cycle 
increases the larger the bubble and the smaller the 
temperature driving force. 

The figures also indicate an almost linear behaviour 
of 7 and X on the bubble radius. However, since the 
heat transfer in a cycle is proportional to the bubble 
volume (all other parameters being unchanged), it 
seems that for latent heat transport it is more efficient 
to employ large bubbles rather than small ones. 

4. CONCLUSlONS 

The characteristics of a periodic evapo- 
ration-condensation cycle of an immiscible drop 
bubble rising and falling in a temperature pro- 
grammed continuous phase indicate the possible ap- 
plicability of this mode of operation for latent heat 
transport. Comparison of a step-change and a linear 
temperature profile with the same overall driving force 

indicates that the step-change yields shorter path- 
amplitude. Larger bubbles convey larger heat loads. 

JAKOB NUMBER, Jo0 

FIG. 7. Amplitude of bubble path at various operation 
conditions. 
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FIG. 8. Time period of bubble cycle at various operation 
conditions. 
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UN CYCLE FERMI? PERIODIQUE CONDENSATION-EVAPORATION DUNE 
BULLE NON MISCIBLE SOUMISE A LA GRAVITE 

Rbumb-On presente un cycle ferme piriodique condensation-evaporation dune ‘bulle’ diphasique 
vapeur-liquide se deplacant par gravite dans une phase continue avec un profil vertical de temperature. Le 
colonne verticale peut consister en deux couches stratifies de deux fluides differents de mime densitt et 
maintenues a des temperatures differentes. Le mouvement cyclique de la bulle est du au transport de chaleur 
Iatente et aUx differences r&sultan&s de densitt relative. La goutte liquide non miscible s’ivapore dans une 
zone chaude a la base, s’acc&re par effect d’Archimede vers le haut, atteint une region froide et se liquefie. 
Son mouvement est alors renversi, la goutte plus lourde retombant vers la region chaude. On presente les 
caracteristiques dune bulle de Freon se deplacant dans I’eau pour des conditions opiratoires differentes 

transitoires ou stationnaires. 

EIN GESCHLOSSENER PERIODISCHER KONDENSATIONS-VERDAMPFUNGS-ZYKLUS 
EINER NICHT MISCHBAREN, DER SCHWERKRAFT UNTERWORFENEN BLASE 

Z~mmeofassnng-Es wird ein geschlossener periodischer Kondensations-Verdampfungs-Zyklus einer 
Zweiphasen-Dampf-Flissigkeits-‘Blase’ behandelt. Die ‘Blase’ wird unter SchwerkrafteinfluR durch eine 
nicht mischbare kontinuierliche Phase, welche ein senkrechtes Temperaturprofil besitzt, bewegt. Die 
vertikale ~~ch~nfolge kann such aus zwei ebenen Schichten zweier verschiedener Fluide ahnlicher 
Dichten, die auf verschiedenen Temperaturen gehalten werden, bestehen. Der Beweg~gs~yklus der Blase 
wird hervorgerufen durch den Transport der latenten Warme und die daraus folgenden Differenzen in den 
relativen Dichten. Der Tropfen aus nicht mischbarer Fliissigkeit verdampft in einer heil3en Zone am Boden, 
wird durch den Auftrieb nach oben beschleunigt. erreicht eine unterkiihlte Zone und kondensiert. Uber das 
Bewegungsverhalten eines Freon-Blasen-Tropfens in Wasser bei verschiedenen Versuchsbedingungen wird 

fur instationiire und stationare Bedingungen berichtet. 

3AMKHYTbIti I-IEPHOJJH~ECKHH KOH~EHCAI@IOHHO-IiCl-lAPHTEJIbHbIH IJHKJI 
IIY3bIPbKA. llEPEMEIIIAIOIIIEl”QCCII IIOJI AEfiCTBHEM CIUIbI TXXECTM 

B HECMElIIHBAIQIIIEHCJl XKMAKQCTM 

Ailtrantm - Qnricari 3aMbzHyTbtii nep~ox~q~~~~ xoHaeHcauwoHHo_Hcnap~enbeMii mwi neyx- 
4rasHoro na~~~x~T~or0 wy3brpbxa>>, ~a~~y~er~a nog Ae~c~xeM cmtbr TRI~(~~TH B cpene 
c BCfYMlWIbHblM reMnepaTypHbrM r&WVieHTOM. &ZpTHKaJtbW% cron6 ~r.UuoXTu MOXeT TaKme 

COCTORTb II3 AByX CJtOeB pa3JtH’IHbrX XCHLlKOCT& C 6JtH3KAMH WtOTHOCTRMW, HO pa3flUYHbtMH TCM- 
neparypah4rr. 

~lWJIHWCKOe Ile~hiNl.WUfe ny3blpbKa BblSbtBaeTCa CKpblTOii TenJIOTOir H pa3HOCTbhJ OTHOCH- 
TenbHbIX nnoTHwTefi XWIKOCTek. Kannn uecMetumiaiomefic~ XWlKOCTW li3 Harpeloii 30HbI Ha nHe 
cTon6a nOAHHMaeTCa BBepX IIOX BeiiCTBHeM nOJWMHOii CHJtU, nonanaeT B 30Hy HeJtOrpeBa, nOnOJtHX- 
eTcR YsurKocTbM H. ym 6onee TRIKeJraR, WaYHHaeT ne~Me~~ca B O6paTHOM Han~~eH~~ B 
CTORorry HarpeTOii 3OHbb 

&%WTaBJreHbt XapaKTepHCTHKH ~~OHOSOI’O II)‘3bIpbKa-KaIlJW, ABH~KyU&iC~ B BOAe II&W pa3lInW- 

HbIX PdiO’iHX )‘CJlOBHXX B IIep#?XOJlHOM H CTaUHOHapHOM &YWCHMaX. 


